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ABSTRACT 

 There has been renewed interest in the analysis of Hit/Miss or Bernoulli data in the context of 

Nondestructive Evaluation (NDE).  Many contributions have been made with a focus on confidence 

bound estimation on this type of data.  Some concern regarding the proper calculation and use of a90 and 

a90/95 estimates has been raised.  In particular, the behavior of a Probability of Detection (POD) curve 

for large flaw sizes above stated a90 estimates has been of concern.  This paper will give a brief 

historical overview of the analysis of hit/miss data, and propose a remedy regarding recent concerns.  

The end result will be a procedure that helps avoid pitfalls in the analysis of hit/miss data. 

 

KEYWORDS 

 Probability of Detection, hit/miss, Bernoulli data, Bayesian methods 

 
INTRODUCTION 

 Studies of the reliability of Nondestructive Inspections (NDI) began with the United States Air 

Force (USAF) in the 1960’s (Packman et al., 1968) and continued during the 1970’s with major efforts 

conducted by the National Aeronautics and Space Administration (NASA) (Rummel et al., 1974) and 

the USAF (Lewis et al., 1978).  Initial efforts to explain the data from these inspection studies used 
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binomial statistics (Rummel, 1982).  In the 1980’s, Berens and Hovey developed parametric methods to 

analyze both hit/miss and signal response data (Berens et al, 1981) and (Berens, 1989).  This provided 

the foundation for guidance for POD studies that has been adopted by the Department of Defense 

(DoD), and has been published as a 2nd edition of a handbook (MIL-HDBK-1823A, 2009).  Other 

agencies and industries have also made use of this guidance (Gandossi et al., 2010) and (Drury et al., 

2006).  It should also be noted that efforts in medical statistics are quite similar to the methods currently 

used for NDE (Collett, 2002).  In medical statistics, the term effective dose is equivalent to a50, and 

lethal dose is equivalent to a90. 

CURRENT METHODS OF ANALYSIS FOR HIT/MISS DATA  

 The current accepted methods used to analyze hit/miss data are similar to the ones published in 

an overview paper on the topic (Berens, 1989).  In that work, the confidence bounds were global, that is 

they were calculated to apply to the entire POD curve.  Later it was decided that this approach was 

overly conservative, and it was sufficient to apply confidence bounds for each flaw size locally (Berens, 

2000).  The likelihood ratio method was also introduced which provided more accurate confidence 

bounds for hit/miss data (Annis et al., 2007) and (Harding et al., 2003).  These two developments were 

incorporated in the second edition of MIL-HDBK-1823.  Recently, concerns have been raised about the 

current approach, and binomial methods have once again been proposed to mitigate concerns about the 

behavior of POD for flaw sizes greater than the established a90 estimates generated by parametric 

approaches (Generazio, 2011).  Further work on nonparametric methods has been done by Spencer with 

the assumption that the POD is a continuous non-decreasing function of flaw size (Spencer, 2011). 

 In the authors’ opinion, there is a valid concern raised in (Generazio, 2011), and that is that one 

could analyze hit/miss data that doesn’t meet the requirements of MIL-HDBK-1823A and still generate 

an estimate for a90/95 that could be misused.  Another concern in (Generazio, 2011) is the assumption of 
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a monontonically increasing POD function.  Proper 3-point calibration (Rummel, 2005) should mitigate, 

at least in part, concerns about monotonicity.  

A REMEDY FOR CONCERNS ABOUT HIT/MISS ANALYSIS 

 It is indeed possible to generate estimates of a90/95 for hit/miss data that can be misleading.  In 

this paper, we propose a Bayesian approach that involves 3 and 4 parameter models that will provide a 

remedy for this problem.  Generally, specific statistical expertise should be consulted to avoid errors in 

POD studies.   

 First, the idea of using more than 2 parameters for the POD model has been proposed in the past 

(Moore et al., 2001).  Additional parameters are added for 2 reasons: 1) the evidence doesn’t support the 

POD curve converging to one for large flaw sizes, and 2) better accounting of false call rates such that 

the POD curve doesn’t converge to 0 for small flaw sizes.  The difficulty with conventional methods is 

in the estimation of the parameters.  The Bayesian methods proposed in this work facilitate easy 

estimation of the model parameters, a simple way to compute confidence bounds, and a systematic 

method for model selection based on the Bayes factor. 

 A detailed description of Bayesian methods is beyond the scope of this paper, but an overview of 

how it can be applied in an NDE context is given in (Thompson, 2010), and all the mathematical details 

can be found in (Christensen, 2010).  A very simple statement of a problem posed in Bayesian terms is 

shown in Figure 1. 

 The posterior is a probability density function that literally reads as the probability of model 

parameters θ, given the data.  The likelihood is also a probability density function that is read as the 

probability of the data given assumptions about the model parameters.  The prior can be noninformative 

as will be the case for this work, or it can represent expert opinion or information from previous 

experiments.  The normalizing constant or marginal likelihood in the denominator is actually integration 
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over the numerator. Most people are familiar with Bayes rule, but there is a computational challenge in 

calculating the normalizing constant or evidence as it is commonly called in the literature.  Calculating 

the evidence requires a high dimensional integration that is typically performed via sampling methods 

such as Markov Chain Monte Carlo (MCMC).   

COMPARISON OF BAYESIAN APPROACH WITH STANDARD METHODS 

 Before applying 3 and 4 parameter models to difficult data sets in (Generazio, 2011), Bayesian 

methods are illustrated on data from Berens seminal paper on the topic (Berens, 1989).    For hit/miss 

analysis the data is assumed to follow a Bernoulli distribution.  Either logit or probit models can be used.                             
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 The traditional methods for estimating parameters b0 and b1 are already established, and the 

Bayesian methods will be compared with standard cases.   Once again, noninformative priors will be 

used in this process, and MCMC sampling will be used to extract information about the parameters.  The 

data provided in (Berens, 1989) and displayed in Figure 7 of that work is used as a benchmark.  Figure 2 

displays the POD curves which appear identical to the ones using the traditional analysis methods.  An 

alternative form of the logit model is given in equation 4, and the parameters μ and σ are related to the 

parameters in equation 2, by equations 5 and 6.  A comparison summary of the results is shown in Table 
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 Inspector  
Parameter A B C Composite 

𝜇̂ 0.96/0.96 1.11/1.11 0.82/0.82 0.96/0.96 
𝜎 0.59/0.59 1.04/1.05 0.87/0.89 0.88/0.85 

 

Table 1. Original analysis/Bayesian methods 

 There are no substantial differences in the results for the 2 parameter models.  The reason this 

Bayesian approach is introduced is because the inference needed for 3 and 4 parameter models is quite 

difficult using traditional methods.  The sampling methods in the Bayesian approach are just as easy to 

implement for the 3 and 4 parameter models as they are for the 2-parameter model.   

ADDITIONAL PARAMETERS IN HIT/MISS MODELS 

The motivation for adding additional parameters to the model is to better represent false call 

rates for small flaw sizes, and to better represent the tail behavior of the POD curve for large flaw sizes.  

Equations 7 and 8 show the form of a 3- parameter model with a lower asymptote for the logit and probit 

models respectively.  Figure 3a depicts this and the value of α can be thought of as a measure of the 

false call rate.  Equations 9 and 10 show the form of a 3-parameter model with an upper asymptote.  

Figure 3b depicts this 3-parameter model.  The β term is a measure of the probability of missing flaws as 

the flaw size goes to infinity.  The 4-parameter model has both terms in it and is described in equations 

11 and 12, and depicted in Figure 3c.  Proper estimation of the upper asymptote is very important for 

addressing pitfalls in POD analysis. 
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If β is smaller than 0.9, then that means a90 and a90/95 simply do not exist, even if the 2 parameter model 

provides estimates.  So there is a choice between 4 models: 1) 2-parameter model, 2) 3-parameter model 

with lower asymptote parameter α, 3) 3-parameter model with upper asymptote parameter β, and 4) 4-

parameter model.  Each of these can use either the logit or probit link function, so that makes a total of 8 

models.  The determination of which model is appropriate for a given data set is determined by looking 

at the ratio of marginal likelihoods a.k.a. the Bayes factor.   

AVOIDING PITFALLS IN HIT/MISS ANALYSIS 

 The combination of the 3 and 4 parameter models with Bayesian methods are powerful tools that 

can be used to avoid pitfalls in the analysis of hit/miss data.  The process is simply to calculate the 

marginal likelihood for each of the 8 possible models and to determine which model is most appropriate.  

If the 3 or 4 parameter model is selected, it is very possible that a90 or a90/95 might not exist even though 

inference with the 2-parameter model provides estimate.  Let’s look at an example that appeared in 

(Generazio, 2011).  There was a particular set of data that the author identified as a “Case 2 data set 

D8001(3)L.”  It was reported that the “Logit-ML” a90/95 value was 12.95 mm.  The latest version of 

MIL-HDBK-1823 was not cited in the paper, so this analysis could have been done with older software 

with a known deficiency, which was corrected by implementing the likelihood ratio method for 

confidence bound calculation (Annis et al., 2007).  The value obtained for a90/95 using the likelihood 

ratio method is 22 mm and many warnings are displayed throughout the calculation (Annis, 2012).  
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Since there are many misses for large flaw sizes in this data set, it most likely doesn’t meet the 

requirements to be analyzed according to the procedures set forth in (MIL-HDBK-1823A, 2009).  For 

this case, the data is analyzed using 8 potential models.  The 2-parameter, 3-parameter with upper 

bound, 3-parameter with lower bound, and the 4-parameter model will all be examined for both the logit 

and probit models.  The marginal likelihoods for each are listed in Table 1. 

 

 

Model type logit probit Bayes factor 

logit/probit 

2-parameter 1.1806e-87 2.7022e-88 4.3690 

3-parameter lower bound 2.9183e-89 4.2119e-89 0.6929 

3-parameter upper bound 6.1396e-83 8.28e-83 0.7415 

4-parameter 9.2848e-83 4.0047e-81 0.0232 

 

Table 1. Marginal likelihoods and Bayes factors for each possible model 

 The ratio of evidence or marginal likelihoods for competing models is used to select the best 

model.  This ratio is known as the Bayes factor. The marginal likelihood for an individual model doesn’t 

provide useful information, but the relative marginal likelihoods do.  Note that all the models with upper 

asymptotes have far higher marginal likelihoods than models without, so all evidence suggests that an 

upper bound is necessary for this data set.  Also note, that the Bayes factor is only greater than 1 for the 

2-parameter case.  Since this is the ratio logit/probit, this implies that the probit model better fits the data 

for all models except the 2-parameter model.  The 4-parameter probit model has the highest marginal 

likelihood compared to all other possibilities, so it is the best choice out of all the models.  It turns out 
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that a90 and a90/95 do not exist for this data set.   The lower asymptote is 0.2657, and the upper asymptote 

is 0.8574.  This basically indicates that the false call rate is quite high, and that the POD on average is 

0.8574 as flaw size goes to infinity.  Figure 4 displays the 4-parameter probit model which is most 

appropriate for this data set.   

  

SUMMARY AND CONCLUSIONS 

 The proper analysis of hit/miss inspection data is still very important since this type of data is 

still widely collected for POD studies.  A brief historical survey of the analysis of this type of data in the 

context of POD was given and accompanied by recent advances.  Some concerns related to the statistical 

analysis and design of POD studies were listed and addressed.  In particular, the potential to determine 

estimates of a90 or a90/95 with conventional 2-parameter models when the data do not support their 

existence was examined.  An approach using more parameters in the logit or probit model to adequately 

describe the tail behavior of POD curves was presented.   Bayesian methods can be used to determine 

parameter estimates for these more complicated models.  Finally the Bayes factor is used to determine 

which model is most suitable, and should mitigate concerns about improperly estimating a90 and a90/95. 

  

 

ACKNOWLEDGEMENTS 

 The authors wish to thank Eric Lindgren for helpful comments that provided useful direction.   
 
 
 
 
 
 
REFERENCES 
 
Annis, C., and J.S. Knopp, “Comparing the Effectiveness of a90/95 Calculations,” Rev. Prog. Quant. 
Nondestr. Eval, Vol 26, 2007, pp. 1767-1774. 

Approved for public release; distribution unlimited.



 

 9 

Annis, C., “Statistical Best-Practices for Building Probability of Detection (POD) models” R package 
mh1823, version 2.5.4.1, http://statisticalengineering.com/mh1823 
 
Berens, A.P. and P.W. Hovey , “Evaluation of NDE Reliability Characterization,” Final Report 
AFWAL-TR-81-4160, University of Dayton Research Institute, 1981. 
 
Berens, A.P., NDE Reliability Data Analysis, American Society for Metals Handbook Nondestructive 
Evaluation and Quality Control, Vol 17, pp. 689-701, ASM International, 1989. 
 
Berens, A.P., “Probability of Detection (POD) Analysis for the Advanced Retirement for Cause (RFC)/ 
Engine Structural Integrity Program (ENSIP) Nondestructive Evaluation (NDE) System Development,” 
Technical Report AFRL-ML-WP-TR-2001-4010, Air Force Research Laboratory, 2000. 
 
Christensen, R., W. Johnson, and A. Branscum, Bayesian Ideas and Data Analysis: An Introduction for 
Scientists and Statisticians,” CRC Press, 2010. 
 
Collett, D., Modelling Binary Data, Chapman and Hall, 2002. 
 
Drury, Ghylin, and Holness, Error Analysis and Threat Magnitude for Carry-on Bag Inspection, 
Proceedings of the Human Factors and Ergonomic Society 50th Annual Meeting, Vol 50, 2006, pp. 
1189-1193. 
 
Gandossi, L. and K. Simola, “Derivation and Use of Probability of Detection Curves in the Nuclear 
Industry,” Insight Vol 52, 2010, pp. 657-663. 
 
Generazio, E.R. “Validating Design of Experiments for Determining Probability of Detection Capability 
for Fracture Critical Applications”, Materials Evaluation, Vol 69, 2011, pp. 1399-1407. 
 
Harding, C.A., and G.R. Hugo, “Experimental Determination of the Probability of Detection Hit/Miss 
Data for Small Data Sets”, Rev. Prog. Quant. Nondestr. Eval, Vol 22, 2003, pp. 1823-1844. 
 
Lewis, W.H., W.H. Sproat, B.D. Dodd, and J.M. Hamilton, “Reliability of Nondestructive Inspections – 
Final Report.  Technical Report SA-ALC/MME 76-6-38-1, San Antonio Air Logistics Center, 1978. 
 
Moore, D.G.  and F.W. Spencer, Interlayer crack detection results using sliding probe eddy current 
procedures, 10th Asia–Pacific Conference on Non-Destructive Testing, Brisbane, Australia, 2001. 
 
Packman, P.F., H.S. Pearson, G.B. Marchese, and J.S. Owens, “The Application of a Fracture 
Mechanics – Nondestructive Testing Design Criterion,” Technical Report AFML-TR-68-32, Air Force 
Materials Laboratory, 1968. 
 
Rummel, W.D., P.H.J. Todd, S. A. Frecska, and R.A. Rathke, “The Detection of Fatigue Cracks by 
Nondestructive Testing Methods,” Technical Report NASA CR 2369, National Aeronautics and Space 
Administration Martin Marietta Aerospace, 1974. 
 

Approved for public release; distribution unlimited.



 

 10 

Rummel, W.D., “Recommended Practice for Demonstration of Nondestructive (NDE) Reliability on 
Aircraft Production Parts,” Materials Evaluation, Vol. 40, 1982, pp. 922–932. 
 
Rummel, W.D.  “NDE Procedure Validation and Use in NDE System Calibration for NDE 
Applications”, Rev. Prog. Quant. Nondestr. Eval, Vol 24, 2005, pp. 1982-1986. 
Spencer, F.W. “Nonparametric Pod Estimation for Hit/miss Data: a Goodness of Fit Comparison for 
Parametric Models”, Rev. Prog. Quant. Nondestr. Eval, Vol 30, 2011, pp. 1557-1564. 
 
Thompson, R.B., A Bayesian Approach to the Inversion of NDE and SHM Data”, Rev. Prog. Quant. 
Nondestr. Eval, Vol 29, 2010, pp. 679-686. 
 
U.S. Department of Defense, MIL-HDBK-1823A Nondestructive Evaluation System 
Reliability Assessment, (August 2010). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Approved for public release; distribution unlimited.



 

 11 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

𝑝(𝜃|𝑦) =
𝑝(𝑦|𝜃)𝑝(𝜃)

𝑝(𝑦)
 

 

 

• Prior – Belief about the statistical parameters or expert opinion. 

• Evidence – Normalizing constant or marginal likelihood that is important for model selection 

purposes. 

• Posterior – Integration of experimental data and beliefs, expert opinion, and physics based 

models 

• Likelihood – Probability that the data is generated from statistical model with parameters 
 
 
Figure 1: Diagram of Bayesian approach used for statistical inference. 
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Figure 2.  Data from (Berens, 1989) analyzed using Bayesian approach with noninformative priors. 
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Figure 3.  POD model options: (a) 3-parameter with lower bound, (b) 3-parameter with upper bound, 
and (c) 4-parameter with lower and upper bound. 
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Figure 4. Probit 4-parameter model that best fits data set D8001(3)L. 
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